“World wonders” are ancient, massive sights to behold, both natural and manmade. Wonder materials, in contrast, are much newer discoveries, wonderful not for their impressive size, but their qualities and versatility.

I write a lot about graphene on my blog, and for good reason: it’s a material with amazing properties and incredible potential applications. That’s why they call it a wonder material. But I would be remiss not to mention some of the other wonder materials currently in development. These materials are amazing in different ways, and each have impressive applications of their own.

Here are seven wonder materials of the world you should know about. They aren’t as majestic as grand pyramids or canyons, but they are all definitely awesome in their own right:

  1. Graphene: As you may already know, graphene is a super-light, highly conductive layer of carbon that is both thinner than paper and stronger than steel. Graphene is ideal for flexible devices, body implants, and battery power, not to mention military and healthcare technology.
  1. Spider Silk: Scientists have long been fascinated with the ridiculous strength of spider webs, but it’s only been recently that they’ve been able to harness it through genetic engineering. Spider silk is a stronger-than-steel, high-information, low-energy, and environmentally friendly material. Though difficult to mass-produce, it could aid in the production of bulletproof vests and artificial limbs.
  1. Metamaterials: These wonder materials are capable of masking both light and sound, not unlike an invisibility/silence cloak. One metamaterial, fishnet-like in construct, is printed into layered silver and dielectric composite films that effectively mask the visible light spectrum, totally concealing objects from certain angles.
  1. Shrilk: Take discarded shrimp scales and silk protein, and what do you get? For scientists, it’s shrilk, a wonder material as strong as aluminium but just half the weight. The clear, flexible material is fully biodegradable and would make an excellent substitute for plastic.
  1. Stanene: Created on a computer and designed from theory, stanene is an insulator on the inside and a conductor on the outside. Atom-thin sheets of it could conduct energy with 100 percent efficiency, and ultimately replace silicon as an abundant and affordable material for computer chips.
  1. Aerogel: Fully translucent and nearly light as air, the material aerogel is derived from gel with the water replaced with the liquid component replaced by glass. The material has evolved over the years, and thanks to NASA research, may be used to create light, insulated space suits.

7. Black phosphorous: 2D crystal black phosphorus has a wide range of electronic capabilities, in some cases even more so than graphene. Because of its wide bandgap and ability to disperse light, it could be especially useful for nanoelectronics. It’s produced by putting lumps of crystals into liquid and bombarding it with acoustics until thin sheets fall away.