Graphene’s potential for drug delivery and implant tech has long been noted, but up until now it hasn’t exactly played nicely with human tissue. The ultra-strong, conductive, atom-thick material could utterly transform healthcare… but first, we have to get learn to input it without frying biological material in the process. As wonderful as graphene is, I’m sure that would hurt a heck of a lot.

Scientists recently made a huge step in this regard. You see, the issue before was all about heat — you just can’t put a sheet of graphene against skin cells, send power to it, and expect all to function safely. Teams from teams from MIT and Bejing’s Tsinghua University recently ran a simulation, however, and they think they’ve found a solution: water. You might call it a water sandwich, to be a bit more exact.

What’s a water sandwich, besides a suitable lunch for a model? It’s a thin layer of H2O that surrounds the graphene layer. Varying thickness of this water layer could be used to dissipate heat at different rates, a variation that could be controlled based on the graphene itself.

To their surprise, the heat did not build up before flooding and overheating the cell membrane. Instead, the water crystallized against the chicken-wire patterned graphene sheet and dissipated the heat evenly. The water behaved like a solid material, easing the conductivity from graphene to membrane.

The scientists also identified the critical power the graphene should be applied with to avoid any membrane frying. Their findings were published in the journal Nature Communications on September 23.

The ability to control graphene’s heat could be especially useful if and when, in the future, it’s used to target and kill cancer cells. Frying wouldn’t be so bad at all in that case.

According to so-author Zhao Qin, a research scientist in MIT’s Department of Civil and Environmental Engineering (CEE), “I think graphene provides a very promising candidate for implantable devices….Our calculations can provide knowledge for designing these devices in the future, for specific applications, like sensors, monitors, and other biomedical applications.”