Back in 1965, Intel cofounder Gordon Moore observed that processing power for computers would double every two years for the foreseeable future. This idea turned out to be true, and became known as Moore’s Law, as engineers continually found ways to make the components on computer chips not only smaller, but also faster and cheaper.

When Moore first made this observation, a memory chip could store up to 1,000 bits of information. Today? A memory chip can now store up to 20 billion transistors. Moore’s Law has driven Silicon Valley to incredible tech breakthroughs ever since Intel and Apple ushered in the age of personal computers back in the 70s. Since then, we’ve moved into an age of handheld computers in the form of smartphones—and soon we may even have bendable phones, thanks to graphene.

But is the end of Moore’s Law in sight? And if so, what happens to computer innovation if chip processing can no longer get smaller, faster and cheaper?

Chip technology has already become so advanced that engineers are manipulating materials on the molecular and atomic level. It’s hard to get smaller than an atom, which is why engineers are starting to look beyond silicon for the next game-changer in the world of tech.

The most likely candidate to knock silicon off the chip throne? Graphene, of course. In 2014, IBM built the first successful graphene analog chip that ran 10,000 times faster than a silicone version. Because graphene is just one atom thick and extremely flexible and conductive, it’s a viable alternative to the silicon and copper setup currently used in chip technology. Best of all, it could lead to lower heat production, energy consumption, and lower cost.

Graphene still faces some technological hurdles in becoming a viable semiconductor in computer chips– namely that it has no bandgap in its molecular structure, making it difficult to retain data in addition to sending it at super fast speeds.

For now, IBM believes carbon nanotubes may be a more viable alternative to manufacture direct semiconductors. Graphene, however, has huge potential for photonic computing, or computers powered not by electricity, but by light. Photons can move info much more quickly than electrons, so the future of computers is most likely in optic tech.

Studies have found that using a combination of graphene, silicon and electrodes can produce computer chips capable of swiftly converting light into electrical signals. Such technology will have a huge array of applications in computers and smartphones. Once scientists solve the optic computing puzzle, we can expect to see graphene as a main player in the computer chips of tomorrow.

Just as Moore’s Law provided engineers with more than a half century of computer innovation, graphene promises to usher in the next generation of technological breakthroughs. Just another reason graphene is such a smart material to invest in.